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Asymmetric unimodal maps at the edge of chaos
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We numerically investigate the sensitivity to initial conditions of asymmetric unimodal mapsxt1151
2auxtuzi ( i 51,2 correspond toxt.0 andxt,0, respectively,zi.1, 0,a<2, t50,1,2, . . . ) at theedge of
chaos. We employ three distinct algorithms to characterize the power-law sensitivity to initial conditions at the
edge of chaos, namely: direct measure of the divergence of initially nearby trajectories, the computation of the
rate of increase of generalized nonextensive entropiesSq , and multifractal analysis. The first two methods
provide consistent estimates for the exponent governing the power-law sensitivity. In addition to this, we verify
that the multifractal analysis does not provide precise estimates of the singularity spectrumf (a), especially
near its extremal points. Such feature prevents to perform a fine check of the accuracy of the scaling relation
between f (a) and the entropic indexq, thus restricting the applicability of the multifractal analysis for
studying the sensitivity to initial conditions in this class of asymmetric maps.
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I. INTRODUCTION

In recent years, there has been an increasing interest i
behavior of the one-dimensional dissipative maps at th
chaos threshold@1–9#. When the sensitivity to the initia
conditions is examined at the onset of chaos, the sensit
function, defined through

j~ t !5 lim
Dx(0)→0

Dx~ t !

Dx~0!
, ~1!

@whereDx(0) andDx(t) are the discrepancies of the initia
conditions at times 0 andt#, can be put in a convenientl
generalized form

j~ t !5@11~12q!lqt#1/(12q) ~qPR!, ~2!

~solution of j̇5lqjq) wherelq is the generalized Lyapuno
exponent. This equation recovers the standard expone
form exp(l1t) for q51 ~here,l1 is the standard Lyapuno
exponent!, but genericallyqÞ1 corresponds to a power-law
behavior. In this case, iflq,0 and q.1 (lq.0 and q
,1) the system is said to beweaklyinsensitive~sensitive! to
the initial conditions, a situation that is different from th
standard case where we havestronginsensitivity~sensitivity!
for l1,0 (l1.0).

Although asymptotic power-law sensitivity to initial con
ditions was observed previously@10–12#, j(t) as given by
Eq. ~2! provides a more complete description than justj(t)
}t1/(12q) (t@1), in the sense that it provides not only th
exponent but also the coefficientlq and moreover it is ex-
pected to be correct not only at very large times but also
intermediate times after a possibly quick transient. At
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edge of chaos,j(t) presents strong fluctuations with time
reflecting the fractal structure of the critical attractor, and E
~2! delimits the power-law growth of the upper bounds of t
sensitivity function. These upper bounds allow us to estim
the proper valueq* of the indexq for the map under con-
sideration. This method has already been successfully u
for a variety of one-dimensional dissipative maps such
logistic @1#, z-logistic @2#, circle @3#, z-circular @4# maps.

The second method of estimating theq* value of the map
under consideration comes from the geometrical aspect
the attractor at the chaos threshold. This method is base
the multifractal singularity spectrumf (a), which reflects the
fractal dimension of the subset with singularity strengtha
@13,14#. The f (a) function is a downward parabolalike con
cave curve and typically vanishes at two points, name
amin and amax, characterizing the scaling behavior of th
most concentrated and most rarefied regions on the attra
The study of the scaling behavior of these regions led two
us to propose a scaling relation as@3#

1

12q*
5

1

amin
2

1

amax
~q* ,1!. ~3!

This is, in fact, a fascinating relation since it connects
power-law sensitivity to initial conditions of such dynamic
systems with purely geometrical quantities and conseque
provides a completely different method for the determinat
of the properq* value of the map under consideration. Th
method has also been used so far for logistic@3#, z-logistic
@3#, circle @3# and z-circular @4# maps, and the results ob
tained for theq* values are, within a good precision, th
same as those of the first method.

In order to make the situation even more enlightening
third method of obtaining the properq* value of a given
map has been introduced very recently using a specific g
eralization of the Kolmogorov-Sinai~KS! entropy@5,6#. It is
known that, for a chaotic dynamical system, the rate of l
©2002 The American Physical Society07-1
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of information can be characterized by the KS entropy (K1)
and it is defined as the increase, per unit time, of the stan
Boltzmann-Gibbs entropyS152( i 51

W pi ln pi ~we use kB

51). In fact, the KS entropy is defined, in principle, throu
a single trajectoryin phase space based on the frequencie
appearance, in increasingly long strips, of symbolic
quences of the regions of the partitioned phase space@15#.
However, apparently in almost all cases, this definition c
be equivalently replaced by an ensemble-based proced
which is, no doubt, by far simpler computationally than t
former procedure. This ensemble-based version is the on
use herein. On the other hand, it is worth noting that a sin
trajectory-based procedure has been used very recent
@16#.

From the Pesin equality, namely,K15l1 if l1.0 and
K150 otherwise, it is evident that the KS entropy is deep
related to the Lyapunov exponents. The KS entropy rat
then defined throughK1[ limt→`limW→`limN→`S1(t)/t,
wheret is the time,W is the number of regions in the part
tion of the phase space andN is the number of initial condi-
tions ~all chosen att50 within one region among theW
available ones! that are evolving in time. On the other han
for the marginal cases wherel150, a generalized version o
the KS entropyKq has been introduced@1# as the increase
rate of a proper nonextensive entropic form, namely,

Sq~ t !5

12(
i 51

W

@pi~ t !#q

q21
. ~4!

This entropy enables a generalization of the stand
Boltzmann-Gibbs statistics@17,18# and it covers the BG en
tropy as a special case in theq→1 limit. A general review
and related subjects on this nonextensive formalism can
found in Ref.@19#; recent applications in high-energy phy
ics, turbulence, and biology can be seen in Refs.@20#, @21#,
and@22#, respectively. Therefore, for the generalized vers
of KS entropy, the entropy rate is proposed to be

Kq[ lim
t→`

lim
W→`

lim
N→`

Sq~ t !

t
. ~5!

Consistently, the Pesin equality is also expected to be ge
alizable asKq5lq if lq.0 andKq50 otherwise.

Consequently, these ideas have been used very recen
construct a third method of estimating theq* values@5#. It is
conjectured that~i! a unique value ofq* exists such thatKq
is finite for q5q* , vanishes forq.q* , and diverges forq
,q* ; ~ii ! this value ofq* coincides with that coming from
the other two methods described previously. These con
tures have been verified with numerical calculations, at
edge of chaos, for the standard logistic map@5#, logisticlike
map family, and generalized cosine map@6#, which strongly
supports the point that all three methods yield one and
same specialq* value of a map under consideration. At th
point, it is worth mentioning that when the initial condition
are very spread in phase space~instead of the localized
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ones!, another class ofq* values ~above unity instead of
below unity! has been found forz-logistic case@23#.

Although these three different methods of findingq*
value have been already tested and numerically verified f
number of one-dimensional dissipative map families, it is
doubt convenient~in the spirit of further clarifying their do-
main of validity! to test them in more general grounds. F
example, all the maps discussed so far belong to o
dimensional, dissipative, symmetric, one- or two-parame
unimodal families. At this point, one can ask what happe
for the~i! two- ~or more! dimensional maps,~ii ! conservative
maps,~iii ! asymmetric families. Needless to say, if any o
of these cases could be analyzed with the above mentio
three methods consistently, the scenario would obviously
come more robust. In the present effort, we shall try to ma
a step forward addressing the point~iii !, namely, the asym-
metric three-parameter family of logistic map of the form

xt115 f ~xt![H 12auxtuz1 if xt>0,

12auxtuz2 if xt<0,
~6!

wherez1,2.1, 0,a<2, 21<xt<1 andt50,1,2, . . . .

II. ASYMMETRIC LOGISTIC MAP FAMILY: NUMERICAL
RESULTS

The properties of this kind of asymmetric map fami
have already been studied@24–26#. The asymmetric shape o
the map family is illustrated in Fig. 1~a! for a typical value of
(z1 ,z2) pair, whereas in Fig. 1~b! the bifurcation diagram has
been plotted. Before the onset of chaos, the sequence o
furcations is the same as that of Feigenbaum, but in the c
otic region~after the onset of chaos!, the relative sizes of the
various windows are quite different from those of th
z-logistic map ~namely, z15z25z). Moreover, it is well
known that this map family fails to exhibit the metric un
versality of Feigenbaum. In this case, the scaling fact
~Feigenbaum numbers! aF and d present an oscillatory di-
vergent behavior@24,25#. Same kind of oscillatory behavio
has also been observed for multifractal functionf (a) @26#.

Sinceq* values were not available for asymmetric logi
tic map family, it was not possible to see the behavior ofq*
as a function of the (z1 ,z2) pairs. On the other hand, in
very recent effort@7#, in order to see this behavior,without
finding the precise values of q* for (z1 ,z2) pairs, one of us
has used another technique based on the very recent g
alization of bit cumulants for chaotic systems@27,28#. In
spite of the fact that inq-generalized bit cumulant theory,q is
a free parameter, it seems from the results of@7# that asz2
2z1→6`, q* will approach unity, which is similar to the
behavior observed for symmetric maps studied so far@1–4#.

We are now prepared to proceed with our numerical
sults for the asymmetric logistic map family. First of a
since our aim is to look at the properties of this family at t
onset of chaos, the calculated values of the critical map
rameter (ac) as a function of (z1 ,z2) pairs are given in Fig.
2 and in Table I. It is evident that the behavior ofac values
with respect to (z22z1) is very similar to the tendency ofac
values of thez-logistic family with respect to parameterz.
7-2
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ASYMMETRIC UNIMODEL MAPS AT THE EDGE OF CHAOS PHYSICAL REVIEW E65 036207
A. First method

As already discussed above, this method is based on
sensitivity to initial conditions and for the asymmetric logi
tic map family, the sensitivity functionj(t) is given by

ln j~ t !5(
t51

l

lnFd f~xt!

dx G , ~7!

and exhibits, at the chaos threshold, a power-law diverge
j}t1/(12q* ), from where q* values can be calculated b
measuring, on a log-log plot, the upper bound slope 1
2q* ). In Fig. 3, for x050, the behavior of the sensitivity

FIG. 1. ~a! Asymmetric shape of the map given by Eq.~6! for
the inflexion parameter pair~2, 4!. ~b! The bifurcation diagram of
the map for the same inflection parameter pair.
03620
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function @namely, the time evolution of Eq.~7!# has been
illustrated for two typical (z1 ,z2) pairs. The slope of the
upper bound has been calculated for each pair between
time interval@4, 8.5#. The calculation of the slope has bee
done by taking into account the points that lie on the up
bound within the above-mentioned time interval. We enco
tered that, as (z22z1) values become larger~that is the map
becomes more asymmetric!, the number of points that could
be used in estimating the slope becomes fewer. For s

FIG. 2. The behavior of the critical map parameterac as a
function of (z22z1) for two typical inflection parameter pairs. Th
dotted lines are guides to the eye.

TABLE I. The values ofac andq* for various (z1 ,z2) pairs.

(z1 ,z2) ac q*

(2,1.25) 1.21403412 . . . 0.7660.01
(2,1.4) 1.25863959 . . . 0.6260.01
(2,1.5) 1.28613959 . . . 0.5860.01
(2,1.6) 1.31201155 . . . 0.4960.01
(2,1.75) 1.34799246 . . . 0.3160.01
(2,2) 1.40115518 . . . 0.2460.01
(2,2.25) 1.44691055 . . . 0.3660.01
(2,2.5) 1.48645043 . . . 0.4760.01
(2,2.75) 1.52083316 . . . 0.5660.01
(2,3) 1.55094551 . . . 0.6360.01
(2,3.5) 1.60109881 . . . 0.7160.01
(2.5,1.6) 1.30334301 . . . 0.7260.01
(2.5,1.75) 1.33742470 . . . 0.6160.01
(2.5,2) 1.38805851 . . . 0.4960.01
(2.5,2.5) 1.47055000 . . . 0.3960.01
(2.5,3) 1.53418776 . . . 0.4960.01
(2.5,3.25) 1.56070446 . . . 0.5560.01
(2.5,3.5) 1.58439440 . . . 0.6060.01
(2.5,4) 1.62488124 . . . 0.6760.01
7-3
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cases, one should go for times larger than say 8.5~in loga-
rithmic scale!, which requires much more precision on th
values ofac . On the other hand, for the (z1 ,z2) pairs given
in the Table, the above mentioned time interval is go
enough to determine the slope. From this slope, for each
we calculate theq* values and in Fig. 4 we exhibit th
behavior of q* as a function of (z22z1) for two typical
pairs. It is seen that as (z22z1) goes 6`, q* becomes
closer to unity without attaining it. This tendency is cons
tent with the recent claim of Ref.@7# and also similar to the
behavior of symmetric map families studied so far@1–4,29#.

B. Second method

As mentioned previously, for this asymmetric family, th
multifractal functionf (a) fluctuates considerably for differ

FIG. 3. Log-log plot of the sensitivity function versus time fo
~a! ~2, 1.75! and ~b! ~2.5, 3! pairs.
03620
d
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ent number of iterations~I! that prevents us from estimatin
the exact values ofamin andamax from where we determine
q* values. Worse than that, this problem cannot be cured
extrapolating the number of iterations to infinity as it is do
in Ref. @4# for the z-circular maps and@9# for the single-site
map. Inz-circular case, the fluctuations are so systematic t
one can extrapolate the results to infinite number of iterati
with acceptable precision from whereamin andamax values
could be deduced, whereas for asymmetric logistic fam
this is not the case. To illustrate this, we plotted thef (a)
curve for the inflexion pair (2,3) in Fig. 5~a!, where the
oscillatory behavior is evident. Moreover, we presented
Fig. 5~b!, the extrapolation ofamin and amax for the same
pair. It is clear from the confidence interval that it is n
possible to estimate their correct values due to large fluc
tions. This yields us to conclude that for this asymmet
map family, the second method cannot be used easily to
termineq* values due to the unavoidable fluctuations in t
f (a) function. In fact, this result has also been supported
a recent observation: One of us has shown recently@29# that
for z-logistic maps, the scaling relation given in Eq.~3! can
be reexpressed as 1/(12q)5@(z21)ln 2#/@ln aF(z)#, which
clearly points out that this scaling is dependent on Feig
baum constantaF . Since for the asymmetric map family w
are studying, as already mentioned, the Feigenbaum num
exhibit oscillatory divergent behavior@24,25#, it is evident
thatq* values cannot be easily and reliably inferred from t
scaling relation due to these fluctuations.

C. Third method

Finally, in order to verify the results of the first metho
let us use the entropy increase rate procedure to estimat
properq* values. The procedure is the following: First, w

FIG. 4. The behavior ofq* values as a function of (z22z1) for
(2,z2) and (2.5,z2). The dotted lines are guides to the eye. See
Table for typical error bars.
7-4
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ASYMMETRIC UNIMODEL MAPS AT THE EDGE OF CHAOS PHYSICAL REVIEW E65 036207
partition the phase space intoW equal cells, then we choos
one of them and selectN initial conditions ~all inside the
chosen cell!. As t evolves, these initial conditions sprea
within the phase space and naturally this gives us a
$Ni(t)% with ( i 51

W Ni(t)5N, ;t, which consequently yields
a set of probabilities$pi(t)[Ni(t)/N%. At the beginning of
time, clearlySq(0)50, then it gradually exhibits three suc
cessive regions as first indicated in Ref.@30# for a different
system. In the first region, the entropy is roughly constan
time, then it starts increasing in the second region and fin
it tends towards its saturation value. This indicates that
linear increase of the proper entropy is expected to emerg
the second~intermediate! region. As clearly explained in

FIG. 5. ~a! The behavior off (a) curve for various values of the
number of iterations.~b! The oscillatory behavior ofamin and
amax. The dotted lines are standard confidence intervals~SigmaPlot
1.00!.
03620
et
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Refs. @5,6#, at the chaos threshold, very large fluctuatio
appear in the entropy due to the fact that the critical attrac
occupies only a tiny part of the available phase space.
overcome this problem, we use a procedure of averag
over the efficient initial conditions as discussed in Re
@5,6#. Since this procedure is very time-consuming, we ap
it for two typical (z1 ,z2) pairs to check the results of the firs
method. The results are given in Fig. 6. It is observed th
for all cases, in the intermediate region, the linear increas
the entropy with time emerges only for a special value oq
~namely,q* ), and this value corresponds, within a good p
cision, to the one obtained from the first method. On

FIG. 6. Time evolution of the entropy for three different valu
of q for ~a! ~2, 1.75!; ~b! ~2.5, 3! pairs. Insets: The nonlinearity
coefficientR versusq. The interval characterizing the intermedia
region is @13,31# for ~a! and @7,25# for ~b!. The dotted lines are
guides to the eye.
7-5
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TIRNAKLI, TSALLIS, AND LYRA PHYSICAL REVIEW E 65 036207
other hand, forq,q* (q.q* ) it curves upwards~down-
wards!. To provide quantitative support to this, we fit th
curves with the polynomialSq(t)5A1Bt1Ct2 in the inter-
val @ t1 ,t2# characterizing the intermediate region. The no
linearity coefficientR[C(t11t2)/B is a measure of the im
portance of the nonlinear term, therefore,R vanishes for a
strictly linear fit. These results are given as insets of Fig.

III. CONCLUSIONS

In this work, we performed an extensive analysis of t
sensitivity to initial conditions problem related to a family
asymmetric maps at the edge of chaos. We have been
ticularly interested in exploiting the connections between
sensitivity function, generalized nonextensive entropies
the multifractal character of the critical attractor.

A direct numerical computation of the sensitivity functio
j(t), which measures the temporal evolution of the dista
between initially nearby trajectories, shows strong fluct
tions whose upper bounds delimit a power-law growthj(t)
}t1/(12q* ). The characteristic power-law exponent was de
mined for several pairs of the inflexions at the left and rig
of map inflexion point. For extremely asymmetric map
wild fluctuations do not allow the power-law exponents to
determined with high accuracy, but the general trend in
cates thatq* approaches unity in the limit of very asymme
ric maps.

We also employed a multifractal analysis, based on
standard Halseyet al. algorithm @13#, to compute the singu
larity spectrumf (a) related to the critical attractor of th
present family of asymmetric maps. A recently propos
scaling relation associates the extremal points of thef (a)
ns

s,

ys

ys

s
.
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curve with the power-law exponent governing the sensitiv
function. However, the numerical method used to comp
f (a) exhibits large fluctuations when applied to these asy
metric maps due to the divergent oscillatory behavior of
Feigenbaum numbers. This feature makes the precise es
tion of the location of its extremal points difficult. It would
be valuable to have an alternative algorithm to compute
f (a) curve that could overcome this point to allow a fin
check of the accuracy of the scaling relation@Eq. ~3!# for
these asymmetric maps.

Finally, the sensitivity to initial conditions was invest
gated by computing the rate of increase of generalized en
piesSq . At the edge of chaos, there is a particular entro
index q* for which the entropy grows, in the infinitely fine
graining limit, at a stationary rate after a short initial tra
sient. This method provides values forq* that are in agree-
ment with the ones obtained from the direct measure of
sensitivity function. Although being more time consumin
the entropy measure is free from wild fluctuations and allo
for a relatively fine and confident estimate ofq* . Therefore,
this method should be the starting point to investigate
possibility of similar power-law sensitivity to initial condi
tions in higher dimensional as well as conservative nonlin
dynamical systems~see, for instance, Ref.@31#!.
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